Mark Plecnik, PhD

Discovery and Invention through Computational Mechanical Design

Wing Mechanism

A wing mechanism was designed to reproduce a complex accelerative flapping gait from a single constant RPM motor. The flapping gate was deciphered from data obtained by Tobalske and Dial, 1996, of black-billed magpies. The synthesis process begins by specifying a 4R spatial serial chain that resembles a magpie’s anatomy. Moving the spatial chain through the desired flapping gait defines a function of joint angle over time at each of the four joints. A six-bar Stephenson II function generator was designed for each joint angle function and the whole system was coupled together such that it can be run by a motor spinning at constant RPM.

Finally, compliant joints were added between the wrist and wing tip to mimic this portion of a bird’s anatomy. This joints utilize hard stops in order to limit their compliance to one direction creating aerodynamic check values such that control surfaces remain rigid during downstroke and deflect during backstroke.

The resulting motion has a long, stretched out downstroke followed by a quick, compressed backstroke.

B. W. Tobalske and K. P. Dial, “Flight Kinematics of Black-billed Magpies and Pigeons Over A Wide Range of Speeds,” The Journal of Experimental Biology, 199(2): 263-280, 1996.

Share on twitter
Share on linkedin
Share on email
Share on print

Dr. Mark Plecnik
Assistant Professor
Dept of Aero & Mechanical Engineering
University of Notre Dame
372 Fitzpatrick Hall
Notre Dame, IN 46556, does not sell, rent, loan, trade, lease or otherwise disclose any personal information, including membership forms, e-mail lists, et al.

© 2020, powered by WordPress